
CGS 2545: Database Concepts (Chapter 8) Page 1 Mark Llewellyn

CGS 2545: Database Concepts
Summer 2007

Chapter 8 – Advanced SQL

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cgs2545/sum2007

CGS 2545: Database Concepts (Chapter 8) Page 2 Mark Llewellyn

Objectives

• Definition of terms.
• Write multiple table SQL queries
• Define and use three types of joins
• Write correlated and noncorrelated subqueries
• Establish referential integrity in SQL
• Understand triggers and stored procedures
• Discuss SQL:2003 enhancements and extensions

CGS 2545: Database Concepts (Chapter 8) Page 3 Mark Llewellyn

Processing Multiple Tables – Joins
• Join – a relational operation that causes two or more tables with a

common domain to be combined into a single table or view

• Equi-join – a join in which the joining condition is based on equality
between values in the common columns; common columns appear
redundantly in the result table

• Natural join – an equi-join in which one of the duplicate columns is
eliminated in the result table

• Outer join – a join in which rows that do not have matching values in
common columns are nonetheless included in the result table (as opposed
to inner join, in which rows must have matching values in order to appear
in the result table)

• Union join – includes all columns from each table in the join, and an
instance for each row of each table

The common columns in joined tables are usually the primary key of the
dominant table and the foreign key of the dependent table in 1:M relationships

CGS 2545: Database Concepts (Chapter 8) Page 4 Mark Llewellyn

The following slides create tables for
this enterprise data model

CGS 2545: Database Concepts (Chapter 8) Page 5 Mark Llewellyn

These tables are used in queries that follow

CGS 2545: Database Concepts (Chapter 8) Page 6 Mark Llewellyn

• For each customer who placed an order, what is the
customer’s id, name and order number?

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID
FROM CUSTOMER_T, ORDER_T

WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID;

Join involves multiple tables in FROM clause

Natural Join Example

WHERE clause performs the
equality check for common
columns of the two tables

CGS 2545: Database Concepts (Chapter 8) Page 7 Mark Llewellyn

• List the customer name, ID number, and order number
for all customers. Include customer information even
for customers that do not have an order.

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
ORDER_ID

FROM CUSTOMER_T, LEFT OUTER JOIN ORDER_T
ON CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID;

Outer Join Example (Microsoft Syntax)

LEFT OUTER JOIN syntax with
ON keyword instead of WHERE

causes customer data to appear
even if there is no corresponding
order data

CGS 2545: Database Concepts (Chapter 8) Page 8 Mark Llewellyn

Results

CGS 2545: Database Concepts (Chapter 8) Page 9 Mark Llewellyn

• List the customer name, ID number, and order number for
all customers. Include customer information even for
customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID
FROM CUSTOMER_T, ORDER_T
WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID(+);

Outer Join Example (Oracle Syntax)

Outer join in Oracle uses regular join
syntax, but adds (+) symbol to the
side that will have the missing data

CGS 2545: Database Concepts (Chapter 8) Page 10 Mark Llewellyn

• Assemble all information necessary to create an invoice
for order number 1006

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
CUSTOMER_ADDRESS, CITY, SATE, POSTAL_CODE,
ORDER_T.ORDER_ID, ORDER_DATE, QUANTITY,
PRODUCT_NAME, UNIT_PRICE, (QUANTITY * UNIT_PRICE)

FROM CUSTOMER_T, ORDER_T, ORDER_LINE_T, PRODUCT_T
WHERE CUSTOMER_T.CUSTOMER_ID =

ORDER_LINE.CUSTOMER_ID AND ORDER_T.ORDER_ID =
ORDER_LINE_T.ORDER_ID

AND ORDER_LINE_T.PRODUCT_ID =
PRODUCT_PRODUCT_ID

AND ORDER_T.ORDER_ID = 1006;

Four tables involved in this join

Multiple Table Join Example

Each pair of tables requires an equality-check condition in the WHERE clause,
matching primary keys against foreign keys

CGS 2545: Database Concepts (Chapter 8) Page 11 Mark Llewellyn

Figure 8-2 – Results from a four-table join

From CUSTOMER_T table

From ORDER_T table From PRODUCT_T table

CGS 2545: Database Concepts (Chapter 8) Page 12 Mark Llewellyn

Processing Multiple Tables Using Subqueries

• Subquery – placing an inner query (SELECT
statement) inside an outer query.

• Options:
– In a condition of the WHERE clause.
– As a “table” of the FROM clause.
– Within the HAVING clause.

• Subqueries can be:
– Noncorrelated – executed once for the entire outer query.
– Correlated – executed once for each row returned by the

outer query.

CGS 2545: Database Concepts (Chapter 8) Page 13 Mark Llewellyn

• Show all customers who have placed an order.

SELECT CUSTOMER_NAME FROM CUSTOMER_T
WHERE CUSTOMER_ID IN

(SELECT DISTINCT CUSTOMER_ID FROM ORDER_T);

Subquery Example

Subquery is embedded in
parentheses. In this case it
returns a list that will be used
in the WHERE clause of the
outer query

The IN operator will test to see if the
CUSTOMER_ID value of a row is
included in the list returned from the
subquery

CGS 2545: Database Concepts (Chapter 8) Page 14 Mark Llewellyn

Correlated vs. Noncorrelated Subqueries

• Noncorrelated subqueries:
– Do not depend on data from the outer query.

– Execute once for the entire outer query.

• Correlated subqueries:
– Make use of data from the outer query.

– Execute once for each row of the outer query.

– Can use the EXISTS operator.

CGS 2545: Database Concepts (Chapter 8) Page 15 Mark Llewellyn

Figure 8-3a –
Processing a

noncorrelated
subquery No reference to data

in outer query, so
subquery executes
once only

These are the only
customers that have
IDs in the ORDER_T
table

1. The subquery
executes and
returns the
customer IDs from
the ORDER_T table

2. The outer query on
the results of the
subquery

CGS 2545: Database Concepts (Chapter 8) Page 16 Mark Llewellyn

• Show all orders that include furniture finished in natural
ash

SELECT DISTINCT ORDER_ID FROM ORDER_LINE_T
WHERE EXISTS

(SELECT * FROM PRODUCT_T
WHERE PRODUCT_ID = ORDER_LINE_T.PRODUCT_ID
AND PRODUCT_FINISH = ‘Natural ash’);

Correlated Subquery Example

The subquery is testing for a value
that comes from the outer query

The EXISTS operator will return a
TRUE value if the subquery resulted
in a non-empty set, otherwise it
returns a FALSE

CGS 2545: Database Concepts (Chapter 8) Page 17 Mark Llewellyn

Figure 8-3b –
Processing a

correlated
subquery

Subquery refers to outer-
query data, so executes once
for each row of outer query

Note: only the
orders that
involve
products with
Natural Ash will
be included in
the final results

CGS 2545: Database Concepts (Chapter 8) Page 18 Mark Llewellyn

• Show all products whose price is higher than the average

SELECT PRODUCT_DESCRIPTION, STANDARD_PRICE, AVGPRICE
FROM

(SELECT AVG(STANDARD_PRICE) AVGPRICE FROM PRODUCT_T),
PRODUCT_T
WHERE STANDARD_PRICE > AVG_PRICE;

Another Subquery Example

The WHERE clause normally cannot include aggregate functions, but because the aggregate is
performed in the subquery its result can be used in the outer query’s WHERE clause

One column of the subquery is an
aggregate function that has an alias
name. That alias can then be referred
to in the outer query

Subquery forms the derived table used
in the FROM clause of the outer query

CGS 2545: Database Concepts (Chapter 8) Page 19 Mark Llewellyn

Conditional Expressions Using Case Syntax

This is available with
newer versions of SQL,
previously not part of
the standard

CGS 2545: Database Concepts (Chapter 8) Page 20 Mark Llewellyn

Ensuring Transaction Integrity

• Transaction = A discrete unit of work that must be
completely processed or not processed at all
– May involve multiple updates
– If any update fails, then all other updates must be cancelled

• SQL commands for transactions
• BEGIN TRANSACTION/END TRANSACTION

– Marks boundaries of a transaction
– COMMIT

• Makes all updates permanent
– ROLLBACK

• Cancels updates since the last COMMIT

CGS 2545: Database Concepts (Chapter 8) Page 21 Mark Llewellyn

Figure 8-5: An SQL Transaction sequence (in pseudocode)

CGS 2545: Database Concepts (Chapter 8) Page 22 Mark Llewellyn

Data Dictionary Facilities

• System tables that store metadata
• Users usually can view some of these tables
• Users are restricted from updating them
• Examples in Oracle 9i

– DBA_TABLES – descriptions of tables
– DBA_CONSTRAINTS – description of constraints
– DBA_USERS – information about the users of the system

• Examples in Microsoft SQL Server
– SYSCOLUMNS – table and column definitions
– SYSDEPENDS – object dependencies based on foreign keys
– SYSPERMISSIONS – access permissions granted to users

CGS 2545: Database Concepts (Chapter 8) Page 23 Mark Llewellyn

SQL:2003
Enhancements/Extensions

• User-defined data types (UDT)
– Subclasses of standard types or an object type

• Analytical functions (for OLAP)
• Persistent Stored Modules (SQL/PSM)

– Capability to create and drop code modules
– New statements:

• CASE, IF, LOOP, FOR, WHILE, etc.
• Makes SQL into a procedural language

• Oracle has propriety version called PL/SQL, and
Microsoft SQL Server has Transact/SQL

CGS 2545: Database Concepts (Chapter 8) Page 24 Mark Llewellyn

Routines and Triggers

• Routines
– Program modules that execute on demand
– Functions – routines that return values and take

input parameters
– Procedures – routines that do not return values

and can take input or output parameters
• Triggers

– Routines that execute in response to a database
event (INSERT, UPDATE, or DELETE)

CGS 2545: Database Concepts (Chapter 8) Page 25 Mark Llewellyn

Figure 8-6: Triggers contrasted with stored procedures

Procedures are called explicitly

Triggers are event-driven
Source: adapted from Mullins, 1995.

CGS 2545: Database Concepts (Chapter 8) Page 26 Mark Llewellyn

Figure 8-7: Oracle PL/SQL trigger syntax

Figure 8-8: SQL:2003 Create routine syntax

CGS 2545: Database Concepts (Chapter 8) Page 27 Mark Llewellyn

Embedded and Dynamic SQL

• Embedded SQL
– Including hard-coded SQL statements in a program

written in another language such as C or Java
• Dynamic SQL

– Ability for an application program to generate
SQL code on the fly, as the application is running

