Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790
http://www.cs.ucf.edu/courses/cgs2545/sum2007

School of Electrical Engineering and Computer Science
University of Central Florida

CGS 2545: Database Concepts (Chapter 8) Page 1 Mark Llewellyn 6

Objectives

Definition of terms.
Write multiple table SQL queries
Define and use three types of joins

Write correlated and noncorrelated subqueries

Establish referential integrity in SQL

Understand triggers and stored procedures
Discuss SQL:2003 enhancements and extensions

CGS 2545: Database Concepts (Chapter 8) Page 2

Mark Llewellyn

Processing Multiple Tables — Joins

e JoIn — a relational operation that causes two or more tables with a
common domain to be combined into a single table or view

o Equi-join — a join in which the joining condition is based on equality
between values in the common columns; common columns appear
redundantly in the result table

 Natural join — an equi-join in which one of the duplicate columns is
eliminated in the result table

e Quter jOiﬂ — ajoin in which rows that do not have matching values in
common columns are nonetheless included in the result table (as opposed

to inner join, in which rows must have matching values in order to appear
In the result table)

e Union join — includes all columns from each table in the join, and an
instance for each row of each table

The common columns in joined tables are usually the primary key of the

dominant table and the foreign key of the dependent table in 1:M relationships—

p:
CGS 2545: Database Concepts (Chapter 8) Page 3 Mark Llewellyn @]

CUSTOMER

Places

ORDER

/ \ Is placed by

Contains

The following slides create tables for
this enterprise data model

Figure 2-1 Segment from enterprise data model (Pine Valley Furniture Company)

PRODUCT

Has

/\ Is for

Is contained in

-
x"“x.

ORDER
LINE

CGS 2545: Database Concepts (Chapter 8)

Page 4

Mark Llewellyn

K lgllI‘E 8-1 Pine Valley Furniture Company Customer and Order tables with pointers from
customers to their orders

Fd Microsoft Access

Ele Edt Wew [nsedt Format Records

Iooks Window Help

Type a question forhelp -

-y SRV ke 2 @ Il Y AR Da- @,
L ik | e
Order ID Order Data Customer D Customer ID Customer Name Customer Address
|+ ~ 1007 113&1,.-'3]]4] E — - il Contemporary Casuals 1355 S Hines BEivd
. 1002 10721/2004) f + 2 Walue Fumiture 15145 SW. 17th St.
. 1003 10/22/2004| 15 + 3|Home Fumishings 1900 Allard Awve.
. 1004 10/22/2004 | = 4| Eastern Fumniture 1925 Beltline Rdl.
. 1005 10/24/2004 | 9 5| Imprassions 5535 Wastcort Cr.
- 1008 10/24/2004| 5 6 Furniture Gallery 325 Flatiron Dr.
* 1007 1027 /2004 | 11 * 7| Period Furniture 394 Raimbow Di.
m 1008 10/30/2004) 12 + ™~ gl California Classics 815 Peach Rd.
+ 1003 1152004 4 9 M and H Casual Furniture 3709 First Street
™ 1010 11/5/2004 | 1 k Tl]| Semincle Interiors 2400 Rocky Point Dr.
»* 0 | 0 + _— 11 I American Euro Lifestyles 2424 Missoun Awve M.
Record: 1__ + 12 Balile Creek Furniture 345 Capitol Awve. SW
TR T2 LLIbKIof 0 * 13 Heritage Furnishings BEFE9 College Awve.
- 14| Kanoohe Homes 112 Kiowai S1.
+ 15 Mountain Scenes 4132 Main Strest
#| (AutoNumber)
Record: M| 4 [1 b [MI|e#|oF 18
£ Il | »

Unigue number to identfy customer

CGS 2545: Database Concepts (Chapter 8) Page 5 Mark Llewellyn

Natural Join Example

* For each customer who placed an order, what Is the
customer’s id, name and order number?

Join involves multiple tables in FROM clause

SELECT CUSTOMER T MER 1D, CUSTOMER_NAME, ORDER_ID

FROM CUSTOMER T, ORDER T

WHERIE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID:

!

WHERE clause performs the
equality check for common
columns of the two tables

CGS 2545: Database Concepts (Chapter 8) Page 6 Mark Llewellyn

Outer Join Example (Microsoft Syntax)

e List the customer name, ID number, and order number
for all customers. Include customer information even
for customers that do not have an order.

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
ORDER_ID

FROM CUSTOMER T, LEFT OUTER JOIN ORDER_T
ON CUSTOMER_T.$USTOMER_ID = ORDER_T.CUSTOMER_ID;

LEFT OUTER JOIN syntax with
ON keyword instead of WHERE
- —> causes customer data to appear

even if there is no corresponding
order data

CGS 2545: Database Concepts (Chapter 8) Page 7 Mark Llewellyn

16 rows selected.

CUSTOMER_ID CUSTOMEE_NAME ORDEE_ID
1 Contemporary Casuals 1001
1 Contemporary Casuals 1010
2 Value Furniture 1006
3 Home Furnishings 1005
4 Eastern Furniture 1008
B Impressions 1004
Resu ItS B Furniture Gallery
7 Period Furnishings
8 California Classics 1002
9 M & H Casual Furniture
10 Seminole Interiors
11 American Euro Lifestyles 1007
12 Battle Creek Furniture 1008
13 Heritage Furnishings
14 Kaneohe Homes
10 Mountain Scenes 1003

CGS 2545: Database Concepts (Chapter 8) Page 8

Mark Llewellyn

Outer Join Example (Oracle Syntax)

e List the customer name, ID number, and order number for
all customers. Include customer information even for
customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID
FROM CUSTOMER_T, ORDER_T
WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID(+);

Outer join in Oracle uses regular join /

syntax, but adds (+) symbol to the
side that will have the missing data

P
CGS 2545: Database Concepts (Chapter 8) Page 9 Mark Llewellyn §_ﬁ

Multiple Table Join Example

o Assemble all information necessary to create an invoice
for order number 1006

Four tables involved in this join

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
CUSTOMER_ADDRESS, CITY, SATE, POSTAL_CODE,
ORDER_T.ORDER_ID, ORDER_DATE, QUANTITY,
PRODUCT NAME, UNIT PRICE, (QUANTITY * UNIT PRICE)

FRO'\/I CUSTOMER_T, ORDER_T, ORDER_LINE_T, PRODUCT_T,|

ORDER_LINE.CUSTOMER_ID AND ORDER_T.ORDER_ID =

WHERE CUSTOMER_T.CUSTOMER_ID =
ORDER_LINE_T.ORDER ID

PRODUCT_PRODUCT_ID
AND ORDER_T.ORDER_ID = 1006;

Each pair of tables requires an equality-check condition in the WHERE clause,
matching primary keys against foreign keys

AND ORDER_LINE_T.PRODUCT_ID =
I

7
CGS 2545: Database Concepts (Chapter 8) Page 10 Mark Llewellyn @]

Figure 8-2 — Results from a four-table join

From CUSTOMER T table

CUSTOMER_ CUSTOMER_ POSTAL_
CUSTOMER_ID CUSTOMER_NAME CUSTOMER_ADDRESS CITY ST CODE
Value Furniture 15145 S.W. 17th St. Plano TX 75004 7743
Value Furniture 15145 S.W. 17th St. Flano TX 75094 7743
Value Furniture 15145 S.W. 17th St. Plano TX 75004 7743
ORDERED_ (QUANTITY*
ORDER_ID ORDER_DATE QUANTITY PRODUCT _NAME STANDARD_PRICE STANDARD_PRICE)
1006 24-OCT-04 1 Entertainment Center 650 650
1006 24-0CT-04 2 Writer's Desk 325 650
1006 24-OCT-04 2 Dining Table 800 1600

From ORDER_T table

From PRODUCT T table

CGS 2545: Database Concepts (Chapter 8)

Page 11

Mark Llewellyn

&

Processing Multiple Tables Using Subqgueries

e Subquery - placing an Inner query (SELECT
statement) inside an outer query.

e Options:
— In a condition of the WHERE clause.

— As a “table” of the FROM clause.
— Within the HAVING clause.

e Subqueries can be:

— Noncorrelated — executed once for the entire outer query.

— Correlated — executed once for each row returned by the
outer query.

P
CGS 2545: Database Concepts (Chapter 8) Page 12 Mark Llewellyn @]

Subquery Example

« Show all customers who have placed an order.

The IN operator will test to see if the
CUSTOMER_ID value of arow is
included in the list returned from the
subquery
SELECT CUSTOMER_NAMEFROM CUSTOMER_T
WHERE CUSTOMER 1D IN

(SELECT DISTINCT CUSTOMER_ID FROM ORDER_T)

T

Subquery iIs embedded in
parentheses. In this case it
returns a list that will be used
in the WHERE clause of the
outer query

CGS 2545: Database Concepts (Chapter 8) Page 13 Mark Llewellyn ')j

Correlated vs. Noncorrelated Subgueries

* Noncorrelated subgueries:
— Do not depend on data from the outer query.
— Execute once for the entire outer query.

« Correlated subgueries:

— Make use of data from the outer query.
— EXxecute once for each row of the outer query.
— Can use the EXISTS operator.

P
CGS 2545: Database Concepts (Chapter 8) Page 14 Mark Llewellyn @]

SELECT CLSTOMER_MAME
FROM CUSTOMER_T
WHERE CUSTOMER_ID IM

Figure 8_3a — [SELECT DISTINCT CUSTOMER_ID
] FROM ORDER_T):
ProceSSI ng a 1. The subseuery (shawn in the box) s processed first and an intermediate results 1able
noncorrelated croatodh
b CUSTOMER_ID
subquery ! No reference to data
's in outer query, So
-
1. The subquery - subquery executes
executes and 12
returns the & rows mtectod once only
customer IDs from 2, _Thir outer query retums the requested cusiomer information for each customar includad
the ORDER_T table in the imerrmeciate resulls table:
CUSTOMER_MAME
2. The outer query on TR
the results of the LR These are the only
subquery Imprassions customers that have

Amarican Euro Lifestdes IDS |n the ORDER_T

Batila Creek Fumiture
Mountan Sconos table

8 rows salacted,

CGS 2545: Database Concepts (Chapter 8) Page 15 Mark Llewellyn 0

Correlated Subquery Example

e Show all orders that include furniture finished in natural
ash

The EXISTS operator will return a
TRUE value if the subquery resulted
In a non-empty set, otherwise it
returns a FALSE
SELECT DISFINCT ORDER_ID FROM ORDER_LINE T
WHERH EXISTS
(SELECT * FROM PRODUCT T

WHERE PRODUCT ID[ORDER_LINE_T.PRODUCT_IE‘)
AND PRODUCT_FINISH = "Natural ash’); T

The subquery is testing for a value
that comes from the outer query

CGS 2545: Database Concepts (Chapter 8) Page 16 Mark Llewellyn

Figure 8-3b -
Processing a
correlated
subquery

Note: only the
orders that
involve
products with
Natural Ash will
be included in
the final results

SELECT DISTINGCT ORDER _ID FROM ORDER _LINE _T

WHERE EXISTS
(SELECT * | - : :

FROM PRODUCT _T o : i

WHERE FRODUCT ID = ORDER LINE TPRODUCT ID 3 - ; 3

AND PRODUCT _FINISH = ‘Natural Agh'); wo

Subquery refers to outer- Mo]
query data, So executes once o :

for each row of outer query

| lelﬂ_llli Pra ption| Product_Finigh| Standard Price | Product_Line_|d

LA En 2 Char #i7s00 100m
= 22— offes Tabile Heatural Ash 200000 2000
[|* 4—» 3 ComputerDesk <Ratural Ash> §37500 20001
s 4 Erfedamment Cenler | Malural Maple A0 00 30001
o 5 Whiter's Desk Cherry $32500 100
] B B-Drawer Cvesser Wi'hite Ash ¥Fs00o 200m
R 7 Dining Takle eatural Ash ™ 0000 20001
I 8 Computer Desk Walnut §25000 3000
| | [Aulohlymber) ¥

=k

. The first order 1D is selected from ORDER _LIME _T: ORDER _ID =1001,

2. The subguery is evaluated to see if any preduct m that order has a natural ash finish, Product 2 does, and
is part of the order. EXISTS is valued as true and the order D & added to the resulf table.

A, The next order 1DV is selected from ORDER _LIME _T: ORDER _ID =1002,

4, The subguery is evaluated to see if the product ordered has a natural ash finesh, |t does, EXISTS is valued
&5 true and the arder ID iz added 1o the result table,

5. Processzing continues through each crder ID. Orders 1004, 1008, and 1010 are not included in the result
table because they do not include any furniture with a natural ash finizh. The final result table iz shown in
the tet on page 303,

CGS 2545: Database Concepts (Chapter 8) Page 17 Mark Llewellyn

Another Subguery Example

« Show all products whose price is higher than the average

One column of the subquery is an
Subquery forms the derived table used aggregate function that has an alias
in the FROM clause of the outer query name. That alias can then be referred
to in the outer query

FROM
(SELECT ;I\VG(STANDARD PRICE) AVGPRICE|FROM PRODUCT T)
PRODUCT T
WHERE|STANDARD_PRICE > AVG_PRICE;

The WHERE clause normally cannot include aggregate functions, but because the aggregate is
performed in the subquery its result can be used in the outer query’s WHERE clause

’

o

CGS 2545: Database Concepts (Chapter 8) Page 18 Mark Llewellyn

e

)

Conditional Expressions Using Case Syntax

This is available with

newer versions of SQL, Figure 8-4

preViOUSIy not part of CASE conditional syntax
{CASE expression

the standard {WHEN expression
THEN {expression | NULL}}. ..
| {WHEN predicate
THEN {expression | NULL}}. ..
[ELSE {expression NULL}]
END }

| (NULLIF (expression, expression) }
| (COALESCE (expression. . .)]

CGS 2545: Database Concepts (Chapter 8) Page 19 Mark Llewellyn 0

Ensuring Transaction Integrity

« Transaction = A discrete unit of work that must be
completely processed or not processed at all
— May involve multiple updates

— If any update fails, then all other updates must be cancelled
e SQL commands for transactions

« BEGIN TRANSACTION/END TRANSACTION

— Marks boundaries of a transaction

— COMMIT
« Makes all updates permanent

— ROLLBACK
» Cancels updates since the last COMMIT

CGS 2545: Database Concepts (Chapter 8) Page 20 Mark Llewellyn

Figure 8-5: An SQL Transaction sequence (in pseudocode)

BEGIN transaction
INSERT Order ID, Order date, Customer ID into Order t;

INSERT Order ID, Product ID, Quantity inte Order line t;
INSERT Order ID, Product ID, Quantity into Order line t;
INSERT Order ID, Product ID, Quantity into Order line t;

END transaction

Invalid Product 1D entered —
Valid information inserted.

COMMIT work Transaction will be ABORTED.
ROLLBACK all changes made to Order_t

All changes to data v

are made permanent. All changes made to Order_t

and Order_line_t are removed.
Database state is just as it was
before the transaction began.

CGS 2545: Database Concepts (Chapter 8) Page 21 Mark Llewellyn

Data Dictionary Facilities

o System tables that store metadata
o Users usually can view some of these tables
« Users are restricted from updating them
e Examples in Oracle 9i
— DBA_TABLES - descriptions of tables
— DBA_CONSTRAINTS - description of constraints
— DBA_USERS - information about the users of the system
« Examples in Microsoft SQL Server
— SYSCOLUMNS - table and column definitions

— SYSDEPENDS - object dependencies based on foreign keys
— SYSPERMISSIONS - access permissions granted to users

CGS 2545: Database Concepts (Chapter 8) Page 22 Mark Llewellyn

SQL:2003
Enhancements/Extensions

User-defined data types (UDT)
— Subclasses of standard types or an object type

Analytical functions (for OLAP)

Persistent Stored Modules (SQL/PSM)

— Capability to create and drop code modules

— New statements:
e CASE, IF, LOOP, FOR, WHILE, etc.
« Makes SQL into a procedural language

Oracle has propriety version called PL/SQL, and
Microsoft SQL Server has Transact/SQL

CGS 2545: Database Concepts (Chapter 8) Page 23 Mark Llewellyn

Routines and Triggers

 Routines
— Program modules that execute on demand

— Functions — routines that return values and take
Input parameters

— Procedures — routines that do not return values
and can take input or output parameters

e Triggers

— Routines that execute In response to a database
event (INSERT, UPDATE, or DELETE)

CGS 2545: Database Concepts (Chapter 8) Page 24 Mark Llewellyn

Figure 8-6: Triggers contrasted with stored procedures

routine! - Procedures are called explicitly

Call Stored |,
Procedure_name *| Procedure |. . returns value
(parameter_value:) ., as performs
S, routine
. . - \\ .\\\'
Explicit execufion code AN
K"‘x‘:‘x
.'.’
TRIGGER! 'y
_I-f'i_ff Database
Insert -
- rigger
Update 99 // performs
Delete / / trigger action
Implicit execution code J

Triggers are event-driven

Source: adapted from Mullins, 1995.

CGS 2545: Database Concepts (Chapter 8) Page 25 Mark Llewellyn

Figure 8-7: Oracle PL/SQL trigger syntax

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE AFTER} {INSERT | DELETE | UPDATE} ON table_name
[FOR EACH ROW [WHEN (trigger_condition)]]
trigger_body_here;

Figure 8-8: SQL:2003 Create routine syntax

[CREATE PROCEDURE | CREATE FUNCTION} routine_name
([parameter [{,parameter} . . .]])

[RETURNS data_type result_cast] /* for functions only */

[LANGUAGE {ADA |C|COBOL |FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SOL | GENERAL}]

[SPECIFIC specific_name]

[DETERMINISTIC | NOT DETERMINISTIC]

[NO SQL | CONTAINS SQOL | READS SQOL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]

[DYNAMIC RESULT SETS unsigned_integer] /* for procedures only */
[STATIC DISPATCH] /* for functions only */
routine_body

CGS 2545: Database Concepts (Chapter 8) Page 26 Mark Llewellyn

Embedded and Dynamic SQL

 Embedded SQL

— Including hard-coded SQL statements In a program

written in another language such as C or Java
e Dynamic SQL

— Ability for an application program to generate
SQL code on the fly, as the application is running

CGS 2545: Database Concepts (Chapter 8) Page 27 Mark Llewellyn

